企业名称:烟台市莱山区天鸿职业培训学校
电话:0535-6717192/6106530
邮箱:ytthpx@126.com
地址:莱山区海普路8号天鸿培训/开发区福星大厦三楼D区百川教育
网址 :www.ytthpx.com
2012年成人高考数学模拟题5
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={x },B={x }},则A B=
A.{x } B.{x }
C.{x } D.{x }
2. 为虚数单位,
A.0 B.2 C. D.4
3.已知向量 , , ,则
A. B. C.6 D.12
4.已知命题P: n∈N,2n>1000,则 P为
A. n∈N,2n≤1000 B. n∈N,2n>1000
C. n∈N,2n≤1000 D. n∈N,2n<1000
5.若等比数列{an}满足anan+1=16n,则公比为
A.2 B.4 C.8 D.16
6.若函数 为奇函数,则a=
A. B. C. D.1
7.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点, ,则线段AB的中点到y轴的距离为
A. B.1 C. D.
8.一个正三棱柱的侧棱长和底面边长相等,体积为 ,它的三视图中的俯视图
如右图所示,左视图是一个矩形,则这个矩形的面积是
A.4 B. C.2 D.
9.执行右面的程序框图,如果输入的n是4,则输出的P是
A.8
B.5
C.3
D.2
10.已知球的直径SC=4,A,B是该球球面上的两点,AB=2,
∠ASC=∠BSC=45°,则棱锥S-ABC的体积为
A. B.
C. D.
11.函数 的定义域为 , ,对任意 , ,
则 的解集为
A.( ,1) B.( ,+ )
C.( , ) D.( ,+ )
12.已知函数 =Atan( x+ )( ),y= 的
部分图像如下图,则
A.2+ B.
C. D.
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.
二、填空题:本大题共4小题,每小题5分.
13.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为___________.
14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程: .由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.
15.Sn为等差数列{an}的前n项和,S2=S6,a4=1,则a5=____________.
16.已知函数 有零点,则 的取值范围是___________.
三、解答题:解答应写文字说明,证明过程或演算步骤.
17.(本小题满分12分)
△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A= a.
(I)求 ;
(II)若c2=b2+ a2,求B.
18.(本小题满分12分)
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB= PD.
(I)证明:PQ⊥平面DCQ;
(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.
19.(本小题满分12分)
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=2,求第一大块地都种植品种甲的概率;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲
403
397
390
404
388
400
412
406
品种乙
419
403
412
418
408
423
400
413
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据 的的样本方差 ,其中 为样本平均数.
20.(本小题满分12分)
设函数 =x+ax2+blnx,曲线y= 过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;
(II)证明: ≤2x-2.
21.(本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设 ,求 与 的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.
22.(本小题满分10分)选修4-1:几何证明选讲
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(I)证明:CD//AB;
(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
23.(本小题满分10分)选修4-4:坐标系统与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为 ( 为参数),曲线C2的参数方程为 ( , 为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ= 与C1,C2各有一个交点.当 =0时,这两个交点间的距离为2,当 = 时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当 = 时,l与C1,C2的交点分别为A1,B1,当 = 时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数 =|x-2| x-5|.
(I)证明: ≤ ≤3;
(II)求不等式 ≥x2 x+15的解集.
参考答案
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数,选择题不给中间分.
一、选择题
1—5 DADAB 6—10 ACBCC 11—12 BB
二、填空题
13.
14.0.254
15.—1
16.
三、解答题
17.解:(I)由正弦定理得, ,即
故 ………………6分
(II)由余弦定理和
由(I)知 故
可得 …………12分
18.解:(I)由条件知PDAQ为直角梯形
因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.
又四边形ABCD为正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ⊥DC.
在直角梯形PDAQ中可得DQ=PQ= PD,则PQ⊥QD
所以PQ⊥平面DCQ. ………………6分
(II)设AB=a.
由题设知AQ为棱锥Q—ABCD的高,所以棱锥Q—ABCD的体积
由(I)知PQ为棱锥P—DCQ的高,而PQ= ,△DCQ的面积为 ,
所以棱锥P—DCQ的体积为
故棱锥Q—ABCD的体积与棱锥P—DCQ的体积的比值为1.…………12分
19.解:(I)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,
令事件A=“第一大块地都种品种甲”.
从4小块地中任选2小块地种植品种甲的基本事件共6个;
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
而事件A包含1个基本事件:(1,2).
所以 ………………6分
(II)品种甲的每公顷产量的样本平均数和样本方差分别为:
………………8分
品种乙的每公顷产量的样本平均数和样本方差分别为:
………………10分
由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.
20.解:(I) …………2分
由已知条件得
解得 ………………5分
(II) ,由(I)知
设 则
而 ………………12分
21.解:(I)因为C1,C2的离心率相同,故依题意可设
设直线 ,分别与C1,C2的方程联立,求得
………………4分
当 表示A,B的纵坐标,可知
………………6分
(II)t=0时的l不符合题意. 时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即
解得
因为
所以当 时,不存在直线l,使得BO//AN;
当 时,存在直线l使得BO//AN. ………………12分
22.解:
(I)因为EC=ED,所以∠EDC=∠ECD.
因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.
故∠ECD=∠EBA,
所以CD//AB. …………5分
(II)由(I)知,AE=BE,因为EF=FG,故∠EFD=∠EGC
从而∠FED=∠GEC.
连结AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE,
又CD//AB,∠EDC=∠ECD,所以∠FAB=∠GBA.
所以∠AFG+∠GBA=180°.
故A,B,G,F四点共圆 …………10分
23.解:
(I)C1是圆,C2是椭圆.
当 时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.
当 时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.
(II)C1,C2的普通方程分别为
当 时,射线l与C1交点A1的横坐标为 ,与C2交点B1的横坐标为
当 时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此,
四边形A1A2B2B1为梯形.
故四边形A1A2B2B1的面积为 …………10分
24.解:
(I)
当
所以 ………………5分
(II)由(I)可知,
当 的解集为空集;
当 ;
当 .
综上,不等式 …………10分